Cryopreservation of embryos is the process of preserving an embryo at sub-zero temperatures, generally at an embryogenesis stage corresponding to pre-implantation, that is, from fertilisation to the blastocyst stage.
Video Embryo cryopreservation
Indications
Embryo cryopreservation is useful for leftover embryos after a cycle of in vitro fertilisation, as patients who fail to conceive may become pregnant using such embryos without having to go through a full IVF cycle. Or, if pregnancy occurred, they could return later for another pregnancy. Spare oocytes or embryos resulting from fertility treatments may be used for oocyte donation or embryo donation to another woman or couple, and embryos may be created, frozen and stored specifically for transfer and donation by using donor eggs and sperm.
Maps Embryo cryopreservation
Method
Embryo cryopreservation is generally performed as a component of in vitro fertilization (which generally also includes ovarian hyperstimulation, egg retrieval and embryo transfer). The ovarian hyperstimulation is preferably done by using a GnRH agonist rather than human chorionic gonadotrophin (hCG) for final oocyte maturation, since it decreases the risk of ovarian hyperstimulation syndrome with no evidence of a difference in live birth rate (in contrast to fresh cycles where usage of GnRH agonist has a lower live birth rate).
The main techniques used for embryo cryopreservation are vitrification versus slow programmable freezing (SPF). Studies indicate that vitrification is superior or equal to SPF in terms of survival and implantation rates. Vitrification appears to result in decreased risk of DNA damage than slow freezing.
Direct Frozen Embryo Transfer: Embryos can be frozen by SPF in ethylene glycol freeze media and transfer directly to recipients immediately after water thawing without laboratory thawing process. The world's first crossbred bovine embryo transfer calf under tropical conditions was produced by such technique on 23 June 1996 by Dr. Binoy S Vettical of Kerala Livestock Development Board, Mattupatti
Prevalence
World usage data is hard to come by but it was reported in a study of 23 countries that almost 42,000 frozen human embryo transfers were performed during 2001 in Europe.
Pregnancy outcome and determinants
In current state of the art, early embryos having undergone cryopreservation implant at the same rate as equivalent fresh counterparts. The outcome from using cryopreserved embryos has uniformly been positive with no increase in birth defects or development abnormalities, also between fresh versus frozen eggs used for intracytoplasmic sperm injection (ICSI). In fact, pregnancy rates are increased following frozen embryo transfer, and perinatal outcomes are less affected, compared to embryo transfer in the same cycle as ovarian hyperstimulation was performed. The endometrium is believed to not be optimally prepared for implantation following ovarian hyperstimulation, and therefore frozen embryo transfer avails for a separate cycle to focus on optimizing the chances of successful implantation. Children born from vitrified blastocysts have significantly higher birthweight than those born from non-frozen blastocysts. For early cleavage embryos, frozen ones appear to have at least as good obstetric outcome, measured as preterm birth and low birthweight for children born after cryopreservation as compared with children born after fresh cycles.
Oocyte age, survival proportion, and number of transferred embryos are predictors of pregnancy outcome.
Pregnancies have been reported from embryos stored for 16 years. A study of more than 11,000 cryopreserved human embryos showed no significant effect of storage time on post-thaw survival for IVF or oocyte donation cycles, or for embryos frozen at the pronuclear or cleavage stages. In addition, the duration of storage had no significant effect on clinical pregnancy, miscarriage, implantation, or live birth rate, whether from IVF or oocyte donation cycles.
A study in France between 1999 and 2011 came to the result that embryo freezing before administration of gonadotoxic chemotherapy agents to females caused a delay of treatment in 34% of cases, and a live birth in 27% of surviving cases who wanted to become pregnant, with the follow-up time varying between 1 and 13 years.
Legislation
From 1 October 2009 human embryos are allowed to be stored for 10 years in the UK, according to the Human Fertilisation and Embryology Act 2008.
History
The first ever pregnancy derived from a frozen human embryo was reported by Alan Trounson & Linda Mohr in 1983 (although the fetus aborted spontaneously at ten weeks of gestation); the first term pregnancy derived from a frozen embryo was born in 1984. Since then and up to 2008 it is estimated that between 350,000 and half a million IVF babies have been born from embryos frozen at a controlled rate and then stored in liquid nitrogen; additionally a few hundred births have been born from vitrified oocytes but firm figures are hard to come by. It may be noted that Subash Mukhopadyay from Kolkata, India reported the successful cryopreservation of an eight cell embryo, storing it for 53 days, thawing and replacing it into the mother's womb, resulting in a successful and live birth as early as 1978- a full five years before Trounson and Mohr had done so. A small publication of Mukherjee in 1978 clearly shows that Mukherjee was on the right line of thinking much before anyone else had demonstrated the successful outcome of a pregnancy following the transfer of a 8-cell frozen-thawed embryo into human subjects transferring 8-cell cryopreserved embryos." (Current Science, Vol .72. No. 7, 10 April 1997)
References
Source of article : Wikipedia